求 —— 初中数学 关于“幂” 全方面试题及答案参考
剑菜楼将给你介绍初三数学试题的解决方法,希望可以帮助你。以下关于求 —— 初中数学 关于“幂” 全方面试题及答案参考的观点希望能帮助到您找到想要的答案。
- 1、求 —— 初中数学 关于“幂” 全方面试题及答案参考
- 2、初三第二章数学试题
- 3、初三上数学期末试卷带答案
剑菜楼小编整理了以下关于 [] 一些相关资讯,欢迎阅读!
求 —— 初中数学 关于“幂” 全方面试题及答案参考
幂的运算测试题
一、选择题:
1.下列计算中,错误的是( )
A.mn·m2n+1 = m3n+1 B.(−am−1)2 = a 2m−2
C.(a2b)n= a2nbn D.(−3x2)3 = −9x6
2.若xa= 3,xb = 5,则xa+b的值为( )
A.8 B.15
C.35 D.53
3.计算(c2)n•(cn+1)2等于( )
A.c4n+2 B.c
C.c
D.c3n+4
4.与[(− 2a2)3]5的值相等的是( )
A.− 25a30
B. 215a 30
C.(− 2a2)15
D.( 2a)30
5.下列计算正确的是( )
A.(xy)3
= xy3
B.(2xy)3 = 6x3y3
C.(−3x2)3
= 27x5 D.(a2b)n
= a2nbn
6.下列各式错误的是( )
A.(23)4
= 212
B.(− 2a)3 = − 8a3
C.(2mn2)4= 16m4n8 D.(3ab)2 = 6a2b2
7.下列各式计算中,错误的是( )
A.(m6)6
= m36
B.(a4)m = (a 2m)2
C.x2n =
(−xn)2
D.x2n = (−x2)n
二、解答题:
1.已知32n+1+32n= 324,试求n的值.
2.已知 2m = 3,4n= 2,8k = 5,求 8m+2n+k的值.
3.计算:[−x2(x3)2]4
4.如果am= −5,an = 7,求a 2m+n的值.
幂的运算测试题答案:
一、选择题:
1、D
说明:mn·m2n+1 = mn+2n+1
= m3n+1,A中计算正确;(−am−1)2 = a2(m−1) = a 2m−2,B中计算正确; (a2b)n = (a2)nbn
= a2nbn,C中计算正确;(−3x2)3 = (−3)3(x2)3
= −27x6,D中计算错误;所以答案为D.
2、B
说明:因为xa = 3,xb = 5,所以xa+b = xa•xb = 3•5 = 15,答案为B.
3、A
说明:(c2)n•(cn+1)2
= c2×n•c2(n+1)
= c2n•c2n+2 = c2n+2n+2
= c4n+2,所以答案为A.
4、C
说明:[(− 2a2)3]5 = (− 2a2)3×5 = (− 2a2)15,所以答案为C.
5、D
说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3
= 8x3y3,B错;(−3x2)3 = (−3)3(x2)3
= −27x6,C错;(a2b)n
= (a2)nbn = a2nbn,D正确,答案为D.
6、C
说明:(23)4 = 23×4 = 212,A中式子正确;(− 2a)3 = (−2) 3a3
= − 8a3,B中式子正确;(3ab)2
= 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4
= 16m4n8,D中式子正确,所以答案为C.
7、D
说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−xn)2 = x2n,C计算正确;当n为偶数时,(−x2)n= (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.
二、解答题:
1.解:由32n+1+32n
= 324得3•32n+32n
= 324,
即4•32n = 324,32n = 81 = 34,
∴2n = 4,n = 2
2.解析:因为 2m = 3,4n= 2,8k = 5
所以 8m+2n+k = 8m•82n•8k = (23)m•(82)n•8k
= 23m•(43)n•8k =( 2m)3•(4n)3•8k
= 33•23•5
= 27•8•5
= 1080.
3.答案:x32
解:[−x2(x3)2]4 = (−x2•x3×2)4
= (−x2•x6)4= (−x2+6)4
= (−x8)4 = x8×4
= x32.
4.答案:a 2m+n = 175
解:因为am = −5,an = 7,所以a 2m+n = a 2m•an = (am)2•an
= (−5)2•7 = 25•7 =
175
初三第二章数学试题
1、解:设日租金提高X元时,租金总收入达到19440元。 依题意得: (160+X)(120-6X/1O)=19440 解之得:X=20 答:日租金提高20元时,租金总收入达到19440元。2、解:(1)设P、Q两点出发X秒时四边形PBCQ的面积为33平方厘米。依题意得 6(16-3X+2X)/2=33 X=5 答:P、Q两点出发5秒时,四边形PBCQ的面积为33平方厘米。 (2)设P、Q两点出发X秒时 ,点P和Q点的距离为10厘米。 依题意得 (16-3X-2X)2=102-62 (注意括号后面的是平方,10与6后面的2也是平方) X=8/5或X=24/5 答:P、Q两点出发8/5或24/5秒时,点P和Q点的距离为10厘米
初三上数学期末试卷带答案
鲜花纷纷绽笑颜,捷报翩翩最灿烂。绽在心头芬芳绕,合家共同甜蜜笑。金榜题名无限好,不负十年多辛劳。继续扬帆勤钻研,书写明天新诗篇。祝你九年级数学期末考试取得好成绩,期待你的成功!以下是我为大家整理的初三上数学期末试卷,希望你们喜欢。
初三上数学期末试题
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.)
1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限
2.反比例函数y=kx的图象生经过点(1,-2),则k的值为
A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的
A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过
A.第一,二,三象眼 B.第二,三,四象限
C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为
A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=
A.1 B.1.5 C.2
7.抛物线y=-3x2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
8.在同一平面直角坐标系中,函数y=mx+m与y=-mx (m≠0)的图象可能是
9.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB//x轴,交反比例函数y=-3x的 图象于点B,以AB为边作ABCD,其中C、D在x轴上,则SABCD为
A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是
A.相离 B.相切 C.相交 D.三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为
A.43<m </m
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.)
13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为_
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C.则∠BAC等于度.
16.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线弧所围成的阴影部分的面积为__
17.如图,已知点A、C在反比例函数y=ax(a>0)的图象上,点B、D在反比例函数y=bx(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是_
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转m2度:第3次从第2次停止的位置向相同的方向再次旋转m4度;第4次从第3次停止的位置向相同的方向再次旋转m8度……依此类推.例如【2,90】=38,则【2017, 180】=
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)
19.(本小题满分6分)
(1)计算sin245°+cos30°•tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5.
求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD.
(1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润最大利润是多少
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=kx(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=12.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
如图,抛物线y=33(x2+3x一4)与x轴交于A、B两点,与y轴交于点C.
(1)求点A、点C的坐标,
(2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧,
求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF.
求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
下一页分享>>>初三上数学期末试卷答案
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。